Intensive Care Medicine Publisher: Springer-Verlag GmbH ISSN: 0342-4642 (Paper) 1432-1238 (Online) DOI: 10.1007/s001340100871 Issue: Volume 27, Number 4 Date: April 2001 Pages: 757 - 766

Increased ileal-mucosal-arterial PCO₂ gap is associated with impaired villus microcirculation in endotoxic pigs

I.F. Tugtekin, P. Radermacher, M. Theisen, M. Matejovic, A. Stehr, F. Ploner, K. Matura, C. Ince, M. Georgieff, K. Träger

 ^{A1} Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik für Anästhesiologie, Parkstrasse 11, 89075, Ulm, Germany
^{A2} I. Interní Kliniky, Karlova Universita, Plzen, Czech Republic

^{A3} Klinik und Poliklinik für Chirurgie, Universitätsklinikum, Regensburg, Germany
^{A4} Abteilung Anästhesiologie und Reanimation, Bezirkskrankenhaus, Sterzing, Italy

^{A5} Afdeling Experimentele Anaesthesiologie, Academisch Medisch Centrum,

Amsterdam, The Netherlands

Abstract:

Abstract. Objective: To investigate whether an increased ileal-mucosal-arterial PCO₂ gap ((PCO₂) during hyperdynamic porcine endotoxemia is associated with impaired villus microcirculation. Design: Prospective, randomized, controlled, experimental study. Setting: Animal research laboratory. Animals: Twenty-two domestic pigs. Interventions: After baseline measurements, anesthetized and ventilated pigs received continuous i.v. endotoxin (ETX, n=12) for 24 h or placebo (SHAM, n=10). Measurements and results: Before, as well as 12 and 24 h after, the start of endotoxin or saline portal venous blood flow (Q_{PV}, ultrasound flow probe) and lactate/pyruvate ratios (L/P), the ileal-mucosal-arterial (PCO₂ (fiberoptic sensor) and bowel-wall capillary hemoglobin O₂ saturation (%Hb-O₂-cap, remission spectrophotometry) were assessed together with intravital video records of the ileal-mucosal microcirculation (number of perfused/heterogeneously perfused/unperfused villi) using orthogonal polarization spectral imaging (CYTOSCAN A/R) via an ileostomy. At 12 and 24 h endotoxin infusion, about half of the evaluated villi were heterogeneously or unperfused which was paralleled by a progressive significant increase of the ileal-mucosal-arterial (PCO₂ and portal venous L/P ratios, whereas Q_{PV} as well as both the mean %Hb-O₂-cap and the %Hb-O₂-cap frequency distributions remained unchanged. By contrast, in the SHAM-group, mucosal microcirculation was well-preserved, and none of the other parameters were influenced. Conclusions: We conclude that an increased ilealmucosal-arterial (PCO₂ during porcine endotoxemia is related to impaired villus microcirculation. A putative contribution of disturbed cellular oxygen utilization resulting from "cytopathic hypoxia" may also assume importance.

Keywords:

Endotoxin, Ileal-mucosal-arterial PCO 2 gap, Orthogonal polarization spectral imaging, Lactate/pyruvate ratios, Remission spectrophotometry, Villus microcirculation