Poster award: 18th Annual Congress of ESICM, Amsterdam, 2005

Hypercapnia increases gastric mucosal oxygenation during hemorrhagic shock

Schwarte L.A., Schwartges I., Fournell A., Scheeren T.W.L., Picker O. Klinik für Anaesthesiologie, Universitätsklinikum Düsseldorf, Germany

Objective:

Permissive hypercapnia (PHC), e.g., as component of a lung-protective ventilation mode [1], leads to systemic and regional vasodilatation [1]. It is unclear, whether this vasodilatation also increases gastrointestinal microvascular mucosal oxygenation (μ HbO2). This should be beneficial in hemorrhagic shock, since adequate μ HbO2 appears crucial to maintain an intact mucosal barrier [2]. Therefore, we tested the effects of PHC on μ HbO2 during hemorrhagic shock.

Material & Method:

In anesthetized (1.5 MAC sevoflurane), ventilated dogs we measured μ HbO2 of the gastric mucosa [3] (tissue spectrophotometry) and arterial lactate levels. The dogs were randomized to: PHC (etCO2=70 mmHg) with shock (n=6), normocapnia (etCO2=35 mmHg) with shock (n=6), and PHC without shock (n=6). Hemorrhagic shock was induced by acute withdrawal of 20% of blood volume. Statistics: Analysis of variance, Fisher's PLSD, p<0,05.

Results:

PHC under baseline conditions (no shock) significantly increased regional mucosal oxygenation (μ HbO2 from 53 ± 3 to 60 ± 2%) at a decreasing arterial lactate level. During shock, μ HbO2 decreased significantly less under PHC (minus 3 ± 2%), compared to normocapnia (minus 14 ± 4%), and under PHC the arterial lactate increased during shock significantly less than under normocapnia (1.3 ± 0.1 vs. 2.2 ± 0.1 mmol/l). A PHC without shock demonstrated, that μ HbO2 remains increased for hours and returns to baseline after normalisation of etCO2 to baseline.

Discussion:

PHC increases the gastrointestinal mucosal oxygenation. Since during shock the μ HbO2 dropped significantly less under PHC than under normocapnia, a PHC may be a prophylactic/therapeutic option not only to protect the lung, but also to protect the gastrointestinal tract (i.e., the gastrointestinal mucosa).

Literatur:

[1] Laffey JG, Kavanagh BP: Lancet 1999;354:1283-6 [2] Sato N, Kamada T, Shichiri M, Kawano S, Abe H, Hagihara B: Gastroenterology 1979;76:814-9 [3] Schwarte LA, Picker O, Schindler AW, Fournell A, Scheeren TWL: Crit Care Med 2003;31:1999-2005